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Abstract

The dispersed phase wall boundary conditions for gas–particle flows are investigated here accounting for

the effects of wall roughness on frictional inelastic particle–wall collisions. Particle statistics at the wall are

computed by simulating a large number of particle–wall impacts for a given distribution of the incident wall

normal velocity. The collisions are treated by using an irregular bouncing model and avoiding unphysical

impact or reflected angles, the so-called shadow effect. In this sense, the present study is a preliminary step

towards improvement of the formulation of wall boundary conditions for the dispersed phase needed in
two-fluid models. The current approaches which allow deriving the dispersed phase boundary conditions in

the cases of smooth and rough wall are described and analyzed. By taking the zero mass flux condition and

the shadow effect into account, the second- and third-order particle velocity correlations at the wall can be

compared to the theoretical relations obtained in the smooth case. Equivalent friction and restitution

coefficients are defined, making it possible to use the same formulation of the dispersed phase boundary

conditions as established in the smooth wall case. The dependence of these equivalent coefficients upon the

actual collision parameters and the wall roughness is illustrated by the results of the numerical simulation.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Generation and transport of powders in the chemical and pharmaceutical industries, in tur-
bulent combustion sprays, sedimentation of dilute suspensions are all examples of particle–laden
*
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flows. Confined gas–solid flows are frequently found in industrial process technology. Nowadays,
two approaches are mainly used for the numerical prediction of dispersed two-phase flows. In the
so-called Lagrangian method the discrete elements are tracked through a turbulent fluid field by
solving their equations of motion. In the second methodology, both phases are handled as two
interpenetrating continuums and are governed by a set of differential equations representing
conservation laws; this approach is known as Eulerian–Eulerian or two-fluid model. Although
such models are more effective and less time consuming than Lagrangian simulations, traditional
closures may fail in accurate predictions of the dispersed phase turbulent quantities. To overcome
this, considerable efforts have been dedicated during the past years to the development of second-
order turbulence closures for the particulate phase (Reeks, 1993; Simonin et al., 1993; Hyland
et al., 1998; Zhou et al., 2001). Those topics are still in the research stage specially as concerns the
particulate phase wall conditions. It is easier to take the presence of the wall into account by
Lagrangian simulation just by the use of rebound laws and introducing the effect of particle shape
or wall roughness by means of a virtual wall model (Tsuji et al., 1987; Sommerfeld, 1992; Som-
merfeld and Huber, 1999). In two-fluid models, the wall exists only through the boundary con-
ditions needed for the solution of the differential system. In order to obtain accurate information
about the influence of the wall on the behaviour of solid particles, it is important to develop a set
of boundary conditions for the dispersed phase. The establishment of boundary conditions
incorporating the effect of wall roughness is identified as one of the objectives pursued in this
paper.

The usual approach to establish boundary conditions for the dispersed phase in two-fluid
models is based on the determination of the probability density function (PDF) of the particle
velocities close to the wall. Using this PDF-two-fluid method, the mean value of any variable at
the wall can be expressed as a function of the mean value before collision, and relationships
between the various statistical moments of the particle velocity components can be derived,
provided that a deterministic rebound law is prescribed. This method was applied by He and
Simonin (1993) and Sakiz and Simonin (1999) in order to obtain the dispersed phase boundary
conditions at a smooth wall in terms of the Coulomb parameters (coefficients of friction and
restitution), using a pre-assigned binormal PDF for the wall normal particle velocity. Another
approach, based on solving the kinetic equation for the particle velocity PDF, was described and
discussed by Alipchenkov et al. (2001), however in this method the velocity distribution is as-
sumed to be Gaussian, and the range of variation of the collision parameters is restricted.

The above cited methods are dedicated to the case of a smooth wall. The roughness of the wall
is known to be essential for simulations of gas–particle confined flows (like channel or pipe flows)
in order to obtain realistic spatial distributions of the particles (Tsuji et al., 1985). The roughness
of the wall is responsible for the redistribution of momentum components of particles without
excessive accumulation in the vicinity of the wall due to collisions. However, few works exist
taking the effect of wall roughness into account in order to derive the dispersed phase boundary
conditions at the wall, except the recent work of Zhang and Zhou (2002) based on the PDF-two-
fluid method. With the help of a virtual wall model (Sommerfeld, 1992), they constructed a
particle–wall interaction model for second-order two-phase turbulence methods, depending on the
friction and restitution coefficients, and gave analytical relations describing the influence of the
wall roughness on the particle boundary conditions. However, the use of the virtual wall model
without performing some tests based on the generated values of the virtual wall inclination is not
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recommended (Sommerfeld and Huber, 1999). Some generated angles can be unphysical and must
be eliminated in order to obtain a realistic simulation of the particle–wall interaction. This effect,
called the shadow effect, is not taken into account in the work of Zhang and Zhou (2002).
Moreover, they indicate that the introduction of roughness in their study can result in nonzero
normal mean velocity, i.e. the particle mass flux at the wall is not equal to zero. The main
objective of the present investigation is to correct such a drawback and thus complement their
work. For this purpose, we use the approach proposed by He and Simonin (1993) and Sakiz and
Simonin (1999), who obtained the dispersed phase boundary conditions at a smooth wall under
the form of theoretical relationships involving the second- and third-order particle velocity cor-
relations and depending on the wall normal velocity distribution. The velocity moments at the
wall are estimated by means of Dirichlet and flux conditions. The latter uses a diffusion model
expressing the third-order correlations as a function of the second-order correlations, for which
Dirichlet conditions are given. Thus, the third-order wall normal particle velocity correlations
have to be evaluated by another means. Some assumption on the PDF of the incident normal
velocity of the particles has to be made. A priori, such incident particle velocities are unknown in a
channel or pipe flows for example, where the particle motion is governed by a number of other
physical effects, such as turbulence which can modify the incident velocity distribution if the
particles are subject to such influences.

In order to dissociate these two contributions, a statistical study on a large number of particle
rebounds at the wall is carried out with prescribed forms of the incident particle velocity PDF.
Roughness is introduced in the numerical simulations by means of the virtual wall model of
Sommerfeld (1992), taking the shadow effect into account by eliminating unphysical inclination
angles of the wall. Before presenting and discussing the numerical simulations, the formalisms
used in the cases of smooth wall and rough wall are described and compared, with the objective to
investigate whether corrections of the relations obtained in the smooth wall case are possible.
Equivalent restitution and friction coefficients are introduced and their dependence on the
roughness parameter is studied.
2. Theoretical considerations for a smooth wall

2.1. The formalism used by Sakiz and Simonin (1999) for the derivation of smooth wall boundary

conditions

The reader is referred to Sakiz and Simonin (1999) for the details of their analysis based on the
kinetic theory formalism. The smooth and plane wall is supposed to be normal to the y-direction
as shown in Fig. 1. The instantaneous velocity vector of a spherical solid particle before and after
impact are denoted by u and ~u, respectively. The incident particles have a negative wall normal
velocity component, u � n ¼ uY , where n is the unit vector normal to the wall (parallel to the y-
axis), and the reflected particles have a positive velocity component as shown in Fig. 1. The main
assumptions are as follows:

• The particle statistics are stationary and homogeneous in the x-direction.
• The rebounds are deterministic and instantaneous, therefore the reflected velocity does not
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Fig. 1. Sketch of the rebound of a particle on a plane wall.
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depend on any aerodynamic force (like the Magnus effect) which may affect the particle motion
after a collision, but which cannot influence the boundary conditions under investigation.

• Sliding is assumed to occur during every collision.
• The particle velocity component in the spanwise direction is negligible compared to the x-com-

ponent, so that the problem can be handled in a two-dimensional way. It must be pointed out
that this hypothesis does not mean that the particle rotational motion is neglected, because only
the x-component of the angular velocity has to be neglected to obtain such collisions where the
reflected velocity lies in the plane formed by the incident velocity vector and the y-axis.

Under these assumptions, the equations governing the translational and rotational velocity
components are fully disconnected (see Sakiz and Simonin, 1999).

Using a distribution function f for the velocity of the particles, the mean value of any function
w of the velocity is given by
hwðuÞi ¼ 1

N

Z
wðuÞ f ðuÞdu; ð1Þ
where N ¼
R
f ðuÞdu is the particle number density at the wall. The fluctuation of w is defined by

w0 ¼ w� hwi. In order to focus on the effect of the rebounds on the wall, Sakiz and Simonin
(1999) distinguish the mean values of w for incident Æ æ� and reflected particles Æ æþ, linked by the
following relation:
Nhwi ¼ N�hwi� þ Nþhwiþ; ð2Þ

where N� and Nþ are the number densities of incident and reflected particles at the wall,
respectively, so that N ¼ N� þ Nþ. Eq. (2) can be written using the parameter n defined by
n ¼ N�=N :
hwi ¼ nhwi� þ ð1� nÞhwiþ: ð3Þ

As the rebounds are assumed to be purely deterministic, a rebound law function / which links the
incident and reflected velocities of the particle at the wall can be introduced: ~u ¼ /ðuÞ.

In the wall normal direction, the bouncing is supposed to obey ~u � n ¼ �eu � n, where e is the
coefficient of restitution in the wall normal direction. Therefore, the condition of zero mass flux
at the wall, obtained by applying Eq. (3) to the wall normal velocity component, is
n0 ¼
e

1þ e
; ð4Þ
where n0 is the value of the parameter n for a smooth wall.
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By introducing the probability density function for a particle hitting the wall with velocity u to
leave it with a new velocity in the range [~u; ~uþ d~u], Sakiz and Simonin (1999) derived the fol-
lowing expression of the velocity distribution function of the reflected particles, f þ, as a function
of the distribution function of the incident particles, f �:
f þð~uÞ ¼ 1

eJ/
f �ð/�1ð~uÞÞ; ð5Þ
where J/ is the Jacobian of /. The main advantage of this formula is that the function f þ is
calculated making assumptions only on f �. From Eqs. (3)–(5), the main relationship used to
obtain the wall boundary conditions can be shown to be
hwðuÞi ¼ e
1þ e

hwðuÞi� þ 1

1þ e
hwð~uÞi�; ð6Þ
where u ¼ /�1ð~uÞ. The rebound law / has to be given in order to complement the model.
In order to express the particle translational velocity after the collision, the impulsive equations

and Coulomb�s law are used. Besides the coefficient of restitution e, the rebound law is therefore
expressed by means of the friction factor l. In the case where sliding occurs in the longitudinal
direction, and under the above-mentioned condition of negligible spanwise component of the
impact velocity for all particles, the mechanical rebound laws for the translational velocity
components are
~uX ¼ uX þ lð1þ eÞuY ;
~uY ¼ �euY ;

~uZ ¼ uZð¼ 0Þ;

8><
>: ð7Þ
or, in matrix form
~u ¼ Qu with Q ¼
1 lð1þ eÞ 0

0 �e 0

0 0 1

2
4

3
5: ð8Þ
As mentioned above, the relationships involving the angular velocities of the particles are
disconnected from the equations giving the translational velocity components, thus making it
possible to focus on the statistical moments of the translational velocity components which are
needed to express the boundary conditions for Eulerian models, keeping in mind that such models
are still unable to deal with the rotational motion of particles.
2.2. Dispersed phase boundary conditions at a smooth wall

By means of Eqs. (6) and (7), Sakiz and Simonin (1999) derived the following relationships
expressing the various moments of the particle velocity components at the wall in terms of the
only unknown hu03Y i

�
:
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huY i ¼ 0

hu0Xu0Y i ¼ �lhu02Y i
hu02X u0Y i ¼ �2lhu0Xu02Y i � l2eð1� eÞhu03Y i

�

hu03Y i ¼ eð1� eÞhu03Y i
�

9>>=
>>;: ð9Þ
In order to obtain an estimation of hu03Y i
�
, which is required to close this set of equations, it is

necessary to make an assumption about the distribution of the wall normal incident particle
velocity, defined by
f �
Y ðuY Þ ¼

Z
f �ðuÞduX duZ ; ð10Þ
which has the following properties:
Z 0

�1
f �
Y ðuY ÞduY ¼ N�;

Z 0

�1
u2Y f

�
Y ðuY ÞduY ¼ N�hu02Y i

�
: ð11Þ
Several distributions of the wall normal incident particle velocity can be tested. For a Gaussian
distribution of f �

Y (as used by Sakiz and Simonin, 1999),
f �
Y ðuY Þ ¼

2N�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2phu02Y i

�p exp

�
� u2Y
2hu02Y i

�

�
; ð12Þ
the following expression is obtained for w ¼ u03Y by means of relations (1) and (12):
hu03Y i
� ¼ � 4ffiffiffiffiffiffi

2p
p ½hu02Y i

��3=2: ð13Þ
In the case where the distribution of the wall normal incident particle velocity is assumed to be
uniform (in the range ½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3hu02Y i

�p
;þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3hu02Y i

�p
� in order that the variance remains equal to hu02Y i

�
),

f �
Y is expressed by
f �
Y ðuY Þ ¼

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3hu02Y i

�p ; ð14Þ
which yields
hu03Y i
� ¼ � 3

ffiffiffi
3

p

4
½hu02Y i

��3=2: ð15Þ
More generally, for any distribution of the wall normal incident velocity, we can introduce the
constant C defined by
hu03Y i
� ¼ C½hu02Y i

��3=2: ð16Þ
Using the relation hu02Y i
� ¼ 1

e hu02Y i, obtained by means of Eqs. (6) and (8) for w ¼ u02Y , the
dispersed phase boundary conditions can finally be obtained as
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huY i ¼ 0

hu0Xu0Y i ¼ �lhu02Y i
hu02X u0Y i ¼ �2lhu0Xu02Y i � l2hu03Y i
hu03Y i ¼ C 1�effiffi

e
p hu02Y i

3=2

9>>>>>>=
>>>>>>;
; ð17Þ
where C depends on the distribution of uY .
The presented formalism is based on purely deterministic rebounds, which means that it cannot

be applied for stochastic rebounds which may occur as a consequence of the roughness of the wall.
As mentioned in the introductory section, the only available work on this subject is due to Zhang
and Zhou (2002), who proposed wall boundary conditions for the dispersed phase to be used in a
second-order two-phase turbulence model for two-dimensional flows, accounting for the rough-
ness of the wall. In the next section, the rebound laws taking into account the roughness of the
wall are first presented. The formalism used by Zhang and Zhou (2002) is then discussed and
analyzed.
3. Formalism for the rough wall case

3.1. Rebound law accounting for wall roughness

The effect of wall roughness can be introduced into the previous relations (8) by means of the
so-called ‘‘virtual wall’’ model of Sommerfeld (1992). In this model, the actual wall is replaced by
a virtual wall, whose inclination angle c obeys a Gaussian distribution function with a given
standard deviation rc and a zero mean value as shown in Fig. 2. The velocity components in the
virtual wall co-ordinate system are
~ujx;y ¼ P ~ujX ;Y
ujx;y ¼ P ujX ;Y

�
with P ¼

cos c sin c 0

� sin c cos c 0

0 0 1

2
4

3
5: ð18Þ
n
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Fig. 2. The virtual wall model.
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According to (8) and (18), the post-collisional components with respect to the fixed co-ordinates
X and Y become
Fig. 3

shado
~ujX ;Y ¼ P�1QP ujX ;Y : ð19Þ
Attention must be paid to the validity of such rebound laws. Sommerfeld and Zivkovic (1992),
Schade and Hadrich (1998) and Sommerfeld and Huber (1999) have shown that the distribution
of the inclination angle depends on the impact angle of the particle with respect to the wall (the so-
called shadow effect). In order to simulate a physical rebound, some values of the virtual wall
inclination angle c must be avoided, because the incident and the reflected velocities must satisfy
uy < 0 and ~uY > 0, respectively. Fig. 3(a) illustrates the shadow effect in the case of an incident
particle with impact angle ai, for a random generated value of the wall inclination c�. As is
obvious from this sketch, the collision with the virtual wall is impossible if aI < �c since in this
case we would have uy > 0. Similarly, another unphysical situation can appear considering the
rebound after the impact as shown in Fig. 3(b) since we have ~uY < 0. (However, the latter situ-
ation could be treated as physically valid in a Lagrangian simulation if a second wall–particle
collision is imposed just after the first impact.) Thus, testing the signs of u � n0 and ~u � n (where n0 is
the unit vector normal to the virtual wall) allows accounting for the shadow effect by disregarding
the unphysical cases in the numerical simulation.

As shown by Sommerfeld and Huber (1999), a consequence of the shadow effect is that the
distribution function of c is shifted towards the positive values. An example of such a distribution
function obtained by numerical simulation, as explained further, is given in Fig. 4. As expected, a
positive mean value of the wall inclination angle is clearly observed. Therefore, taking the shadow
effect into account seems of importance in order to simulate realistic rebounds. However, up to
now, the only work about Eulerian modelling of dispersed phase boundary conditions with wall
roughness does not account for this effect. This work is by Zhang and Zhou (2002), who focused
on the dispersed phase boundary conditions, but did not mention any test on unphysical impact
and reflected angle values, assuming that the inclination of the wall is so small that they can
neglect the shadow effect. Moreover, the distribution function fc of the virtual wall inclination
angle was uniform, whereas the experimental measurements of wall roughness by Sommerfeld and
Huber (1999) showed that a Gaussian distribution is more appropriate.
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3.2. Comparison of the formalisms used for smooth and rough wall

The formalisms used in previous works are summarized in Table 1, which shows how Zhang
and Zhou (2002) modified the initial formula (6) obtained by Sakiz and Simonin (1999) in order to
apply it for a rough wall. Below, we discuss the formalism used by Zhang and Zhou (2002). As can
be observed in Table 1, the starting relation (3) is the same. Such a relationship is true in any case
(smooth and rough wall). It can be observed, however, that Zhang and Zhou (2002) used Eq. (6),
which comes from Eq. (3) based on the assumption that the rebounds are deterministic, i.e. that
any value of a reflected variable corresponds to one well defined value of the corresponding
incident variable. In this sense, it is clear that Eq. (6) cannot be used in the case of a rough wall.
Moreover, Zhang and Zhou (2002) used the value of n0 obtained for a smooth wall where the ratio
between Nþ and N� is equal to 1=e an assumption which does not account for the effect of
roughness on the ratio of particle number densities Nþ=N�. The particle mass flux at the wall has
to be equal to zero, i.e. huY i ¼ 0. The relation (3), written for w ¼ uY , shows that the parameter
n must therefore satisfy the following condition:
n ¼ N�

N
¼ h~uY iþ

h~uY iþ � huY i�
; ð20Þ
where h~uY iþ is related to huY i� by the rebound law (keeping in mind that huY i� < 0). According to
Eq. (19), h~uY iþ is related to huY i� by a function which depends on the Coulomb parameters and on
the inclination angle of the virtual wall c. Therefore, it is not surprising that n depends on these
parameters. Eq. (20) ensures zero particle mass flux at the real wall, a physical boundary condition
which is not satisfied in the derivation of Zhang and Zhou (2002).



Table 1

Comparison of the formalisms used for smooth and rough wall

Smooth wall: rc ¼ 0, Sakiz and Simonin (1999) Rough wall: rc 6¼ 0, Zhang and Zhou (2002)

Starting point: Eq. (3)
hwðuÞi ¼ nhwðuÞi� þ ð1� nÞhwðuÞiþ;

where n ¼ N�

N ; N ¼ N� þ Nþ

For w ¼ 1; Nþ ¼ 1

e
N� and n0 ¼

e
1þ e

Gaussian distribution for uY : Uniform distribution for uY :

f �
Y ðuY Þ ¼

2N�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2phu02Y i

�p exp

�
� u2Y
2hu02Y i

�

�
f �
Y uYð Þ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3hu02Y i

�p
for �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3hu02Y i

�p
< uY <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3hu02Y i

�p

Resulting relation
hwðuÞi ¼ n0hwðuÞi� þ ð1� n0Þhwð~uÞi� hwðuÞi ¼ n0hwðuÞi� þ ð1� n0Þhðwð~uÞÞci

�

with ðwÞc ¼
Rþ1
�1 wfcðcÞdc
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3.3. Towards a more appropriate proposal

From the general expression of n given by Eq. (20), the correct asymptotic limit for the smooth
wall case, where h~uY iþ ¼ �ehuY i�, is obviously obtained, namely,
n ! n0 ¼
e

1þ e
as rc ! 0: ð21Þ
In the rough wall case, we define an equivalent restitution coefficient e� by
h~uY iþ ¼ �e�huY i� ð22Þ

in such a way that we obtain an expression of n similar to (4):
n ¼ e�

1þ e�
; ð23Þ
where e� is expected to depend not only on e, l, rc, but also on the statistical distribution of uY
and on the ratio huX i=

ffiffiffiffiffiffiffiffiffiffiffiffi
hu02Y i

�p
, which determines the distribution of the angle of incidence.

Similarly, we propose an equivalent friction factor l�, using directly the formulation of the
boundary condition obtained for the smooth wall case:
l� ¼ � hu0Xu0Y i
hu02Y i

: ð24Þ
We then rewrite Eq. (3) in the following form, where the effects of the restitution coefficient,
friction factor and roughness upon the particle phase boundary conditions at the wall are
introduced via e�:
hwi ¼ e�

1þ e�
hwi� þ 1

1þ e�
hwiþ: ð25Þ
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Taking into account such equivalent Coulomb coefficients, a model is proposed for the par-
ticulate phase boundary conditions by analogy with (17), ensuring huY i ¼ 0 at the wall:
hu02X u0Y i ¼ �2l�hu0Xu02Y i � l�2hu03Y i
hu03Y i ¼ C 1�e�ffiffiffi

e�
p hu02Y i

3=2

)
; ð26Þ
where e�, l� and C are defined by Eqs. (22), (24) and (16), respectively.
4. Numerical simulation, results and discussion

The main objective here is to numerically investigate the dependence of the equivalent coeffi-
cients e� and l� upon the primary collision parameters, mainly the roughness parameter, for given
distributions of the incident velocity, and to examine the suitability of the proposed model. For
this reason, the numerical results about the dispersed phase boundary conditions at the wall are
presented with comparison to the results issuing from the model (26). The collisions were assumed
to be two-dimensional, i.e. the spanwise velocity of the particle was not taken into account
(uZ ¼ 0). For each specification of the collision parameters, we simulated a large number of
particle rebounds (106) by means of the rebound law (19). The distribution of the virtual wall
inclination angle was Gaussian with given standard deviation rc and zero mean value. The values
of rc tested here were varied from 0 to 0.2 according to the results of Sommerfeld and Huber
(1999), who showed that the optimum value of rc decreases with increasing particle diameter for a
given physical roughness. The choice of the value of rc in practical problems can be made
according to the recent work by Sommerfeld (2003), who provided correlations of rc as a function
of the particle diameter (0 < dp < 500 lm) for spherical particles. At the present time however, it
is not clear how to decide the value of rc in order to apply such an irregular bouncing model for
nonspherical particles, although the results obtained by Sommerfeld (2002) by means of the exact
impulse equations for various particle shapes are very promising in order to develop such a model.

The distributions of the incident velocity components were prescribed as follows:

• The calculations were performed for two distinct statistical distributions of the wall normal
incident velocity of the particles, namely the Gaussian distribution used by Sakiz and Simonin
(1999) and the uniform distribution used by Zhang and Zhou (2002).

• The tangential incident particle velocity was assumed to obey a Gaussian distribution with
standard deviation equal to the wall normal one, i.e. hu02X i

� ¼ hu02Y i
�
. This is a strong assumption

since in practical problems hu02X i may be expected to exceed the wall normal particle velocity
variance, therefore the effect of varying the ratio hu02X i=hu02Y i has to be examined in the future.
Two values of the mean tangential incident velocity were tested, namely huX i� ¼ 5

ffiffiffiffiffiffiffiffiffiffiffiffi
hu02Y i

�p
and 10

ffiffiffiffiffiffiffiffiffiffiffiffi
hu02Y i

�p
.

4.1. Study of the equivalent restitution and friction coefficients

Figs. 5 and 6 illustrate the ratio e�=e versus the standard deviation of the virtual wall inclination
angle rc. In all the plots, the ratio e�=e is seen to increase with increasing rc, whatever the incident
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normal velocity distribution (Gaussian for Fig. 5, uniform for Fig. 6). The slope of the curves
increases as the restitution coefficient e decreases, and with increasing value of the mean tangential
incident particle velocity, denoting the effect of reducing the mean incidence angle. As can be
observed, e� is always higher than e. Contrary to e, whose maximum value is equal to unity, e� can
reach considerably higher values. This means that the reflected wall normal velocity can signifi-
cantly exceed the particle impact velocity as soon as roughness is present, since h~uY iþ ¼ �e�huY i�
(with huY i� < 0). Accordingly, the wall normal velocity after collision increases as rc increases.
Such a momentum redistribution due to collisions with a rough wall was noticed in earlier works
where gas–solid flows were simulated by Lagrangian particle tracking, like the investigations by
Fukagata et al. (2001) or Sommerfeld (1995, 2003). As can be observed, the ratio e�=e is only
slightly influenced by the friction coefficient l, and the effect of the distribution of uY is hardly
noticeable. Other tests have shown that with increasing values of the tangential incident particle
velocity, its influence becomes insignificant.

The evolution of l�=l as a function of the roughness parameter rc is displayed in Figs. 7 and 8.
Comparison of these two figures shows that l�=l is almost independent of the distribution of uY
for a fixed value of the mean tangential incident velocity huX i�. In contrast to the restitution
coefficient, a nonmonotonic behaviour of l�=l is observed, however. The ratio l�=l first decreases
with increasing rc, and then it increases. The influence of e dominates in the first part of the
curves, in opposite to the second part where the influence of l is clearly prevailing. Such effects are
more obvious when huX i� increases. We can observe that the slope change occurs around
rc � 0:05 for huX i� ¼ 5

ffiffiffiffiffiffiffiffiffiffiffiffi
hu02Y i

�p
and around rc � 0:03 for huX i� ¼ 10

ffiffiffiffiffiffiffiffiffiffiffiffi
hu02Y i

�p
, whatever the fric-

tion and restitution coefficients.
The observed behaviours are most likely related to the influence of the shadow effect, which can

be characterized by the evolution of the mean value of the virtual wall inclination angle hci as rc
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Fig. 5. The ratio e�=e as a function of the roughness parameter rc for a Gaussian distribution of uY . (a)
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increases. In Fig. 9(a), hci is plotted as a function of rc for the two distributions of uY before
collision and for the two values of the mean tangential particle velocity huX i�. Whatever the
conditions, the mean value of c (and therefore the shadow effect) is observed to increase with
increasing roughness. For high values of rc, hci varies almost linearly with rc. The shadow effect is
seen to be enhanced by larger values of huX i�, whereas the effect of the distribution of uY is very
weak. In order to reveal the dependence of the shadow effect on the collision parameters e and l,
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roughness parameter rc: (a) Influence of the incident velocity distribution for e ¼ 0:8, l¼ 0.2. (M;N)
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the mean inclination angle hci is displayed in Fig. 9(b) as a function of rc for various values of the
restitution and friction coefficients. The results show that the shadow effect does not depend on
the friction coefficient, and decreases slightly with increasing e. In that sense, the second part of
the curves in Figs. 7 and 8 seems to be almost independent of the shadow effect since the influence
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of l was seen to prevail, contrary to the first part of the curves, for which a small value of e
corresponds to a maximum influence of the shadow effect.

This analysis shows that the equivalent parameters e� and l� take into consideration the effects
related to the roughness of the wall. Such parameters reproduce, on the one hand, the momentum
redistribution of the particle velocity characterized by e�, which is increasingly large as rc is high,
and, on the other hand, the antagonistic effects of l�, i.e. a decrease in the equivalent friction for
small values of rc (since for such values the momentum redistribution is not yet important) and an
increase in l� for larger values of rc for which the transverse agitation is important.
4.2. Evaluation of the proposed model

In order to examine the pertinence of the proposed model, the results issuing from the model
and from the numerical simulation are compared in Figs. 10–13, in what concerns the normalized
third-order velocity correlations defined by
Fig. 1

correl

Symb

l ¼ 0:
PYYY ¼ hu03Y i
hu02Y i

3=2
ð27Þ
shown in Figs. (10) and (11), which should be equal to C 1�e�ffiffiffi
e�

p according to the model (26), and
PXXY ¼ hu02X u0Y i
hu02Y i

3=2
ð28Þ
shown in Figs. (12) and (13), which should be equal to �2l�hu0Xu02Y i � l�2hu03Y i according to the
model (26).
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In the case of a Gaussian incident normal velocity distribution, even if the model slightly
overestimates the computational predictions (Fig. 10), the obtained values are qualitatively in
good agreement with the simulations and allow to get a satisfactory estimation of PYYY . The
opposite effect (slight underestimation of PYYY ) is observed when a uniform distribution of uY is
used, as shown by Fig. 11, whatever the value of the friction and restitution coefficients and
whatever the mean tangential incident particle velocity. As can be seen from Figs. 12 and 13,
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better agreement is obtained for the correlation PXXY , whatever the statistical distribution of uY .
The correlation PXXY is slightly underestimated by the model for high values of rc, nevertheless
the results are very satisfactory.

To summarize, acceptable estimates of the velocity correlations at the wall are obtained by
means of a formulation close to the smooth wall formulation of Sakiz and Simonin (1999), using
equivalent restitution and friction coefficients, whose values can be prescribed with the help of
Figs. 5 and 6.
5. Conclusions

In order to obtain the boundary conditions needed in two-fluid models for the dispersed phase
in case of irregular particle–wall bouncing, a numerical simulation was carried out by computing
the particle statistics at the wall, handling the collisions by means of a virtual wall model
accounting for the so-called shadow effect. The computational results were analyzed by defining
equivalent restitution and friction coefficients (e�, l�) which may be used to replace the original
coefficients in the available boundary conditions for smooth wall. The obtained results show that
the wall roughness has a considerable influence on the equivalent coefficients whatever the pre-
assigned distribution of the incident wall normal particle velocity. Thanks to these new coeffi-
cients, a model for the particulate phase boundary conditions is proposed ensuring zero mass flux
at the wall. The proposed model leads to good agreement with the results of the numerical
simulation.

This preliminary study can be broadened towards more realistic situations by extending the
computations beyond the strong limitations of the proposed model, i.e. the two-dimensional
character of the bouncing mechanism, and the assumed particle sphericity and isotropy of the
particle velocity fluctuations. This could be achieved by taking the spanwise velocity component
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into account by means of a three-dimensional roughness model, however it is still not clear how to
decide the value of the standard deviation rc in practical problems in order to account for both the
particle size (compared to wall roughness) and the actual particle shape in case of departure from
sphericity. Additionally, numerical statistical studies in turbulent channel or pipe flows by means
of accurate Euler–Lagrange modelling could be performed in order to get a more realistic dis-
tribution of the incident wall normal velocity. The boundary conditions involving the particle
rotational velocity components could be investigated using the same technique, keeping in mind
that the existing two-fluid models are still unable to take the rotational motion of the particle into
consideration, however. Finally, the proposed model has to be submitted to a sensitivity study in
examining the effects of such boundary conditions on the results provided by two-fluid models in
confined gas–solid flows.
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